

NATIONAL ENERGY TECHNOLOGY LABORATORY

Experimental Characterization of Methane Hydrate Bearing Sediments

Yongkoo Seol, NETL

Project Personnel

Robert P. Warzinski – Project Engineer (NETL)

Chemist, Kinetics/Instrumentation

Eilis J. Rosenbaum – Project Engineer (NETL)

Chemical Engineer, Thermal Properties

Ronald Lynn – Engineering Specialist (NETL – Parsons),

Electrical /Technical Specialist

Jeong-Hoon Choi – Postdoctoral Researcher (ORISE)

Structural Engineer, Mechanical Analysis

Ruijia Wang – Postdoctoral Researcher (Virginia Tech)

Material Engineer, Kinetic Measurements

Yongkoo Seol – Physical Scientist (NETL)

Geologist, Experiment/Core-scale Modeling

Collaborators:

Dr. Timothy J. Kneafsey, Lawrence Berkeley National Lab

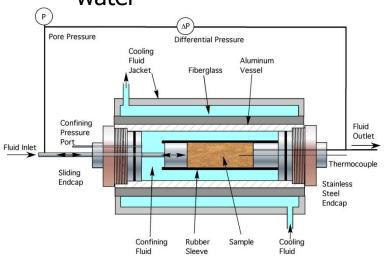
Dr. Roe-Hoan Yoon, Virginia Polytech Institute

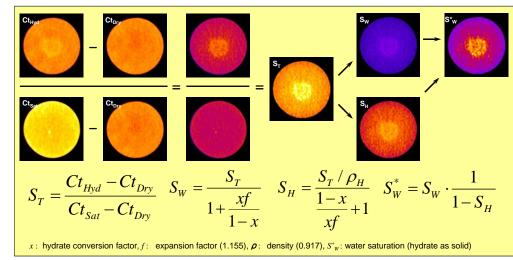
Dr. SungPhil Kang, Korean Institute of Energy Research

Current Projects

- Relative Permeability Estimation of Hydrate bearing Sands (collaboration with LBNL, current)
- 2. Observation of Hydrate Formation Evolution (collaboration with LBNL, current)
- Secondary Hydrate Formation during Dissociation (current)
- 4. Kinetic Study on Methane Hydrate Induction and Formation (current)

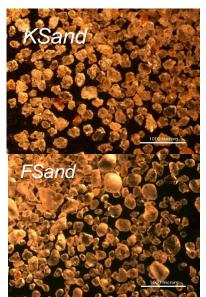
Presentation Outline

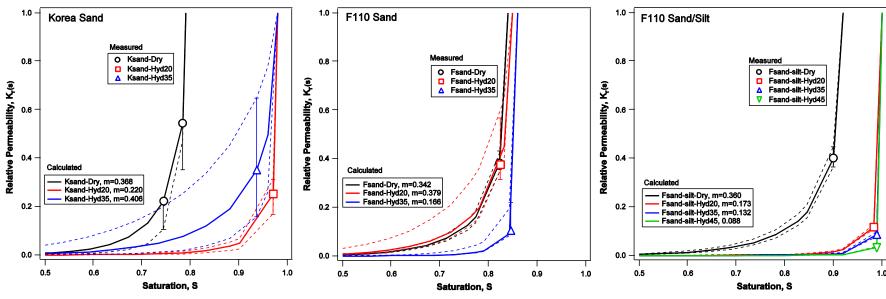

- Relative Permeability Estimation of Hydrate bearing Sands (collaboration with LBNL, current)
- 2. Observation of Hydrate Formation Evolution (collaboration with LBNL, current)
- 3. Secondary Hydrate Formation during Dissociation (current)
- 4. Kinetic Study on Methane Hydrate Induction and Formation (current)


Relative Permeability Estimation

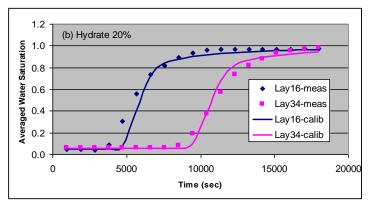
 Steady state method on lab-made hydrate bearing sands, using Darcy's equation and van Genuchten relative permeability relation:

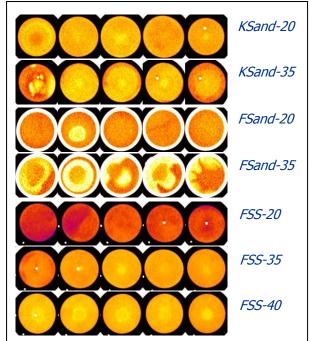
$$k_r(s) = -\frac{Q(s)}{k_i \cdot \left(\frac{\rho g}{\mu}\right) \cdot A \cdot \left(\frac{dh}{dl}\right)} \qquad k_r(s) = \sqrt{S^*} \left[(1 - (1 - S^{*1/m})^m)^2 \right]^2$$


- Measuring permeability, differential pressure during water flow
- X-ray CT used to measure porosity, phase saturations of hydrate and water



Relative Permeability Estimation


- The presence of hydrate in sands changes the relative permeability (k_r) and residual saturations, and the extent of changes were varied with the type of sands
- Large ΔP (and k_r) variation on Ksand may be caused by irregular grain shape, and the k_r of Fsand (+silt) shows more consistency with hydrate saturations.
- The estimated parameters can be used for validation or prior information for transient-state relative permeability estimation method



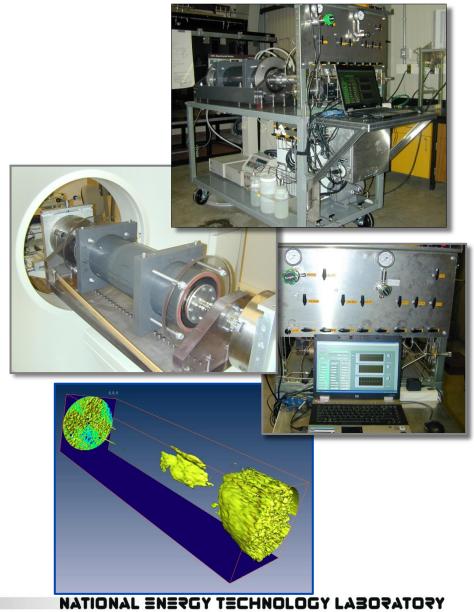
Future Work on Relative Permeability

- Transient-state estimation using CT measured phase saturation and results from the steady state method as a prior information for numerical inversion
 - Monitoring water saturation at certain locations and compare the water saturation with simulation results to find optimal parameter values of the selected constitutional relations
- Heterogeneity on the phase saturation and porosity will impact significantly
- Assumptions on homogeneous hydrate saturation distribution and porosity may not be reasonable for the core scale simulations.
- CT images can be used to provide the numerical simulation with intrinsic heterogeneity on saturations and porosity.

Presentation Outline

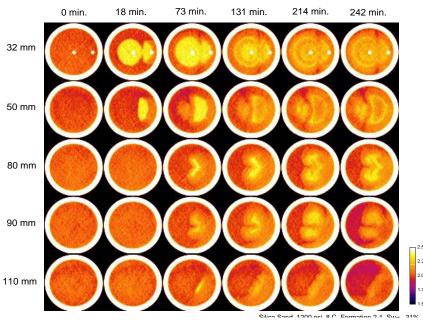
- Relative Permeability Estimation of Hydrate bearing Sands (collaboration with LBNL, current)
- 2. Observation of Hydrate Formation Evolution (collaboration with LBNL, current)
- 3. Secondary Hydrate Formation during Dissociation (current)
- 4. Kinetic Study on Methane Hydrate Induction and Reformation (collaboration with VT, current)

Hydrate Formation in Sands

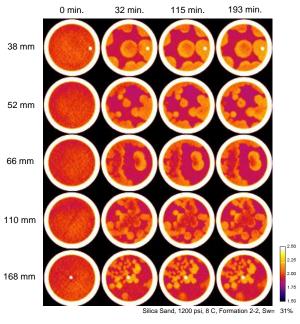

Short term observations (< 24 hr)
of methane hydrate formation and
reformation in F110 silica sand

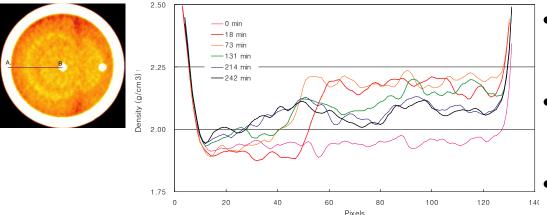
Conditions:

- 1200 psi of pore pressure
- 1500 psi of confining pressure
- 8 °C of temperature (fixed)
- 20 to 40% of initial water saturation
- 40 % of porosity
- Repetitive formations with varying time gaps (12 hr to 48 hr) between dissociation and consecutive reformation

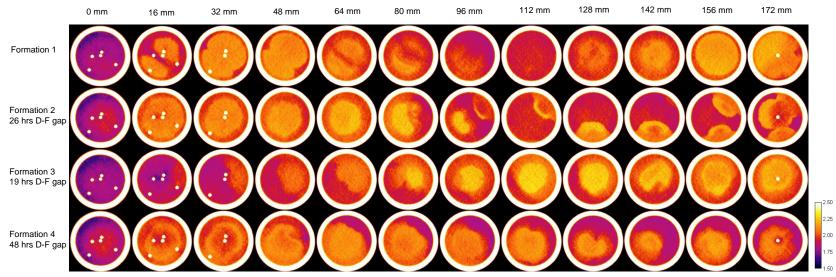

Observations of hydrate distribution:

- Evolution of distribution patterns during a formation period (< 48 hr)
- Reproducibility of hydrate formation distribution at repetitive formations




Short-Tem Hydrate Evolution

Wet sand with 31% of Sw

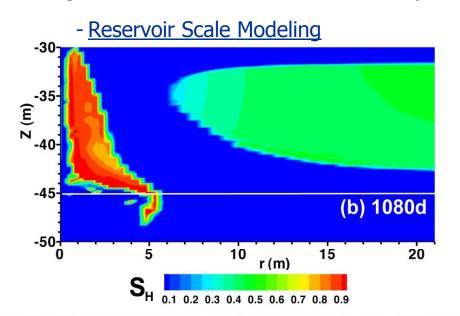

Wet sand with 21% of Sw

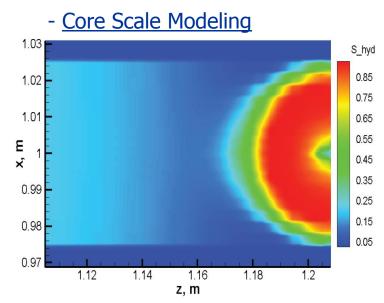


- Formation of hydrate with higher initial water saturation takes longer and shows evolving patterns.
- As hydrate forms, withdrawn water and accumulated hydrates increase density.
- Hydrate dissociation during formation is conjectured but not conformed.

Repetitive Hydrate Formations

- Locations and saturation pattern of hydrate formation is not reproducible and predictable.
- Up to 48 hours of time gas between dissociation and reformation would **not impact on hydrate formation induction time**, at least in current PT condition (1200 psi and 8 °C)
- Hydrate formation renders water to move according to re-equilibrated capillary pressure field. Difference of density between dry and wet samples after hydrate dissociation shows the **redistribution of water**




Presentation Outline

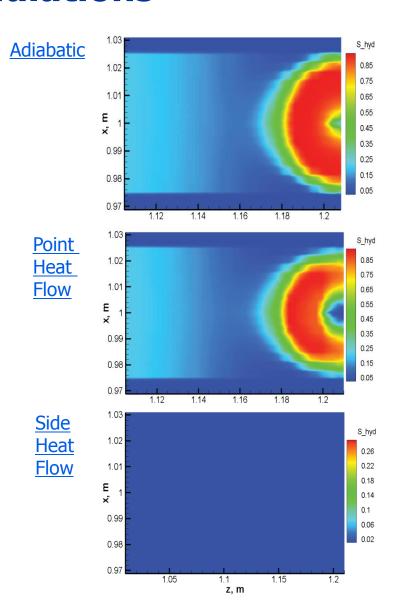
- 1. Relative Permeability Estimation of Hydrate bearing Sands (collaboration with LBNL, current)
- 2. Observation of Hydrate Formation Evolution (collaboration with LBNL, current)
- Secondary Hydrate Formation during Dissociation (current)
- 4. Kinetic Study on Methane Hydrate Induction and Reformation (current)

Current Status of the Problem

- Predicted secondary hydrate formation during gas production in both reservoir and core scale
 - by lowered temperature (Joule-Thompson effect and endothermic nature of hydrate dissociation)
 - by elevated pressure (production shutoff and local heterogeneity)
 - by reduced salinity due to hydrate dissociation (core scale simulations)
- Additional treatments to inhibit hydrate formation have been recommended.
- Experimental validation of the hydrate formation is required.

Numerical Simulations

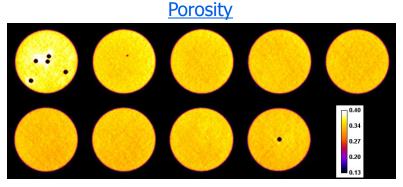
Core scale simulations using actual experimental conditions:

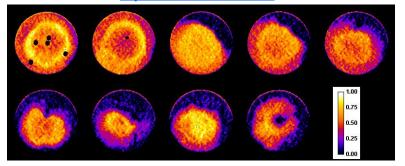

- sand core with 2" diameter x 5" length,
- 35% porosity, 40% hydrate saturation,
- saturated with saline water (3.5 wt%),
- 1200 psi pore pressure, 8 °C temperature,
- 700 psi pressure drop for depressurization,
- heat flow allowed or adiabatic

Secondary hydrate formation occurred

- Adiabatic condition with saline water,
- When Heat flow allowed only through a exiting port

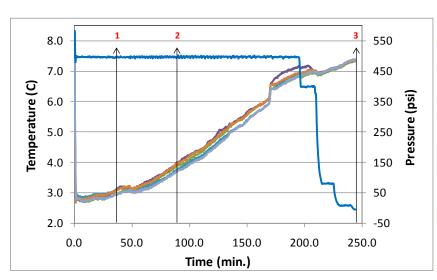
Secondary hydrate formation NOT occurred

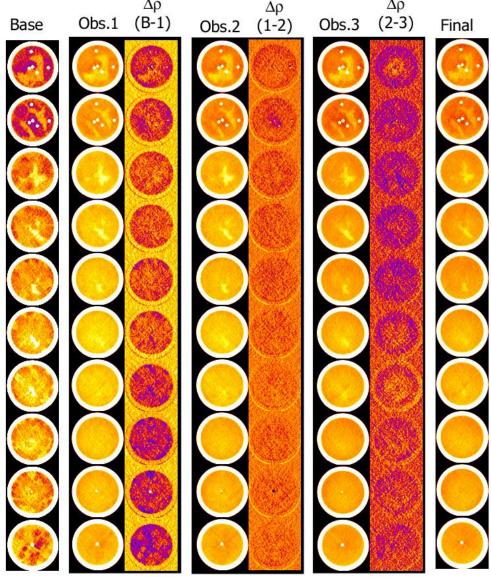

When heat flow is allowed through side boundary (rubber sleeve)


Experiments

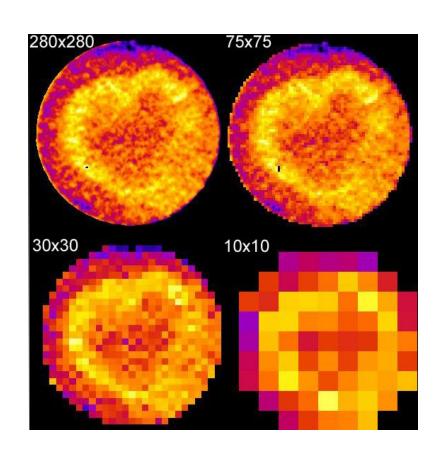
• Experiment procedure:

- Wet sand uniformly packed (2" d x 5" l., 35% Porosity),
- Methane hydrate formed (40% Sh),
- 1200 psi pore pressure, 8 °C temperature,
- saturated with saline water (3.5 wt% KI),
- 700 psi pressure drop for depressurization,
- heat flow allowed through rubber sleeve
- temperature lowered in confining fluid prior to depressurization to mimic adiabatic condition
- Heterogeneity in hydrate saturation was observed.


Hydrate Saturation

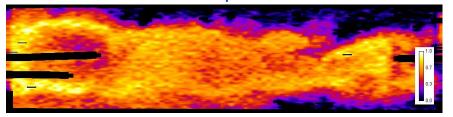

Water Flooded (Density)

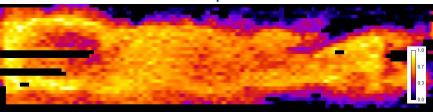
Experiment Results



- Secondary hydrate formations (higher density) are NOT observed in ALL cases.
- Potential preferential pathways (dark spots) of fluid were observed during dissociation.
- Non-uniformity in fluid flow and uneven salinity reduction may result in absence of formation.

Converting CT images into Numerical Mesh


- Image on each slice of CT scan from medical CT have 512x512 pixels and 100 images on a stack for a core sample, that is 26 million pixels!
- Need to simplify the image by setting specific grids that are homogeneous within the grid but preserves the heterogeneous entirety of each image.
- The processed images then can be converted into an input file for numerical simulators such as FLEUNT and TOUGH2.
- Developed an automated tool that can generate reduced CT images, using MATLAB and ImageJ (NIH).
- Total pixel number can be reduced to less than 100 thousands.


Future Work

- Advanced core scale simulations with measured permeability, porosity, and hydrate saturation
- Mesh for input to simulators with intrinsic heterogeneity derived from X-ray CT images
- Potential applications of the conversion:
 - All core scale simulations (relative permeability test, hot water injection test, secondary hydrate formation test, etc)
 - Heterogeneity upscaling to reservoir scale statistically
 - Natural samples into numerical simulations

 $280x280x94 \rightarrow 7.4$ million pixels

 $30x30x94 \rightarrow 85$ thousand pixels

Presentation Outline

- Relative Permeability Estimation of Hydrate bearing Sands (collaboration with LBNL, current)
- 2. Observation of Hydrate Formation Evolution (collaboration with LBNL, current)
- 3. Secondary Hydrate Formation during Dissociation (current)
- 4. Kinetic Study on Methane Hydrate Induction and Reformation (collaboration with VT, current)

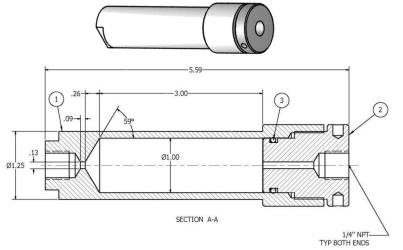
Kinetics of Hydrate Formation

Background

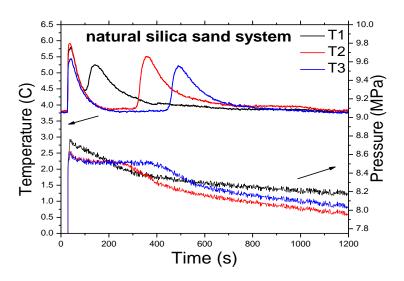
- Hydrate reformation was predicted by numerical simulation during gas production
- Availability of kinetic data on hydrate formation is limited or dissociation kinetic data are used for formation as well.
- Develop equipment and procedures to reliably and reproducibly form methane hydrate and measure <u>hydrate formation induction</u> <u>time and gas consumption rates</u> in various porous media of interest

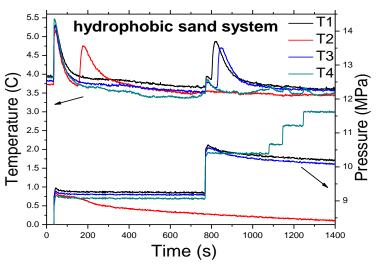
Expected impacts

- Provide information useful for
 - Developing reliable kinetic models to be applied for numerical simulations of hydrate production
 - Predicting potential impacts of hydrate formation kinetics on production strategies for hydrates
 - Contributing to identify optimal models of hydrate formation for production simulation


Approaches

Developing gas hydrate system in porous medium


- Static system (no vortex): Diffusion dominated gas transfer for hydrate formation results in slower formation of hydrate.
- Sediment surface: Greater interface area between gas and liquid enhances hydrate formation.
- Unlimited or limited methane gas supply for P/T observation
- Multiple pressure vessels to reproduce abundant data for statistical analysis
- Smaller volume of aluminum vessel with high thermal conductivity



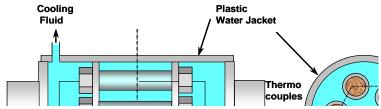
Multi-Pressure Vessel System (MPV)

Hydrate Formation Induction

Formation Condition:

- Constant temperature: 3.8°C
- Initial pressure: 8.7 ∼ 11 Mpa
- Water saturation: ~80%
- Materials:
 - (a) natural silica sand (~ 150µm),
 - (b) surface modified hydrophobic silica sand (~ 150µm, contact angle 20°)

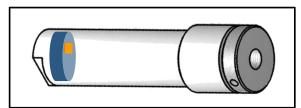
Observations:

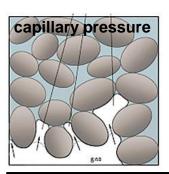

- Hydrophobic sand system required higher driving force for hydrate formation
- Sand surface hydrophobicity introduced difficulty and randomness to gas hydrate formation

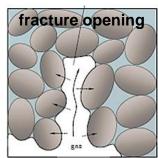
Technical Challenges

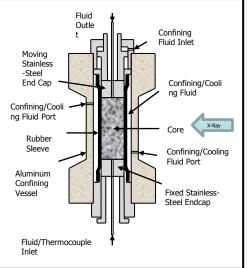
- Probabilistic nature of hydrate inductions
- Numerous key parameters:
 - Porous Medium
 - Driving Forces
 - Thermal History of Waters
- Separation of formation kinetics from heat and fluid conductivity
 - Independent measurements for thermal conductivity and relative permeability of fluids are necessary
- Discrepancy between natural and synthesized hydrates
 - Hydrate occurrences (i.e. pore filling, cementing, or filming)
 - Phase saturations (water-gas system vs. dissolved gas system)
 - Heterogeneity in natural sediments: grain size distribution, surface roughness, compactness, etc.

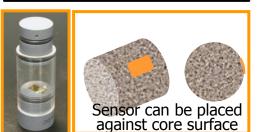
Future Steps

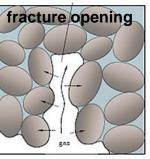

Apply CT scanning technique to monitor CT image of hydrate formation at real time

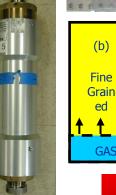


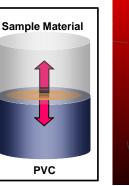

- Investigate the effect of **driving force** by choosing different formation P/T conditions within hydrate stable zone
- Systematical tests for the effect of various degrees of surface hydrophobicity on hydrate formation kinetics
- Study the effect of sand particle size by introducing various materials (e.g. clay, silt etc.)
- Modify/develop **empirical equations** for gas hydrate formation kinetics
- Collaboration with Dr. Roa-Hoan Yoon in Virginia Tech


Current/Proposed Projects


- Observation of Gas Migration and Hydrate Formation in Saturated Porous Media (current)
- Measurement of Geomechanical and **Acoustic Properties of** Synthesized Hydrate-**Bearing Sediments** (current and proposed)
- Thermal Property Measurements (current and proposed)
- Micro Imaging Hydrate Experiments (proposed)







PVC